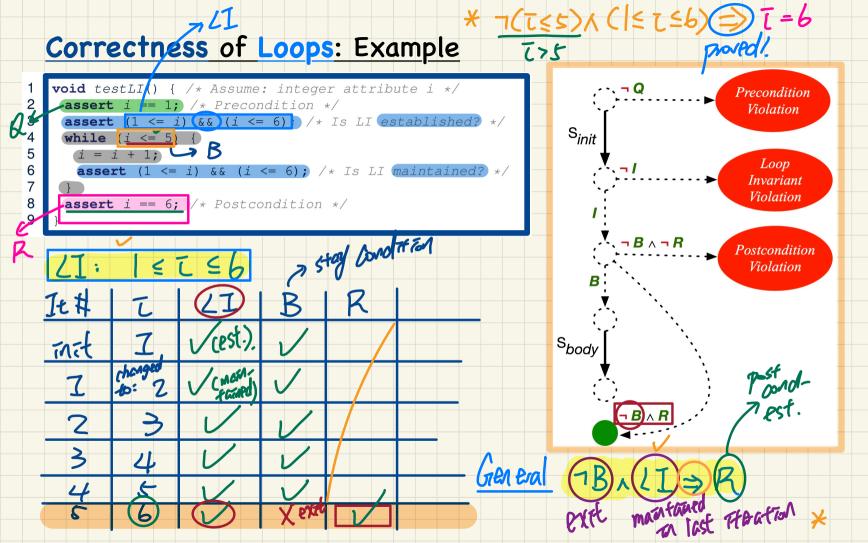
<u>Lecture 17 - Nov 12</u>

<u>Graphs</u>

Loop Invariant (LI): Execution Flow Relating Exit Condition, LI, Postcondition Dijkstra's Algorithm: LI, Assumption


Announcements/Reminders

- Today's class: notes template posted
- Assignment 2 released >> Tedge Lest
- Change of Dates:

 - + Assignment 2 to be due on Wed, Nov 19
 - + Test 2 to be take place on Mon, Nov 24

gramming statements. Correctness of Loops: Syntax Precondition Precondition void mvAlgorithm() **Violation** Precondition */ S_{init} Is II established? Loop Sbody S_{hody} Invariant /* Is LI preserved? * **Violation** ext and to set {**R**} Postcondition */ post condition. Postcondition **Violation** is B: Stay Condition 7B: exit condition, 15 Sbody LI maintained to the ations ** As long as B is true, execute J'sody As soon as B is take, exit from the bor.

after Jinits Sinit Whole (B) we will red thance to the check estalzshmets asset(I);

Exercises

(2)
$$\angle I''$$
: $|\angle I \leq b|$

Contracts of Loops: Visualization Previous state Exit condition DQ (precondition) Sat Initialization InvariantPostcondition Body Body Body, At the end fortion;
Ist stead of an amaraned 21 Jkshed

* Yu· u ∈ Vn u ∈ S ⇒ Day = d(S, u)

Correctness of Loops: Dijkstra's Shortest-Path Algorithm

Recall: A *loop invariant* (*LI*) is a Boolean condition.

- LI is establisehd before the 1st iteration.
- *LI* is <u>preserved</u> at the end of each subsequent iteration.

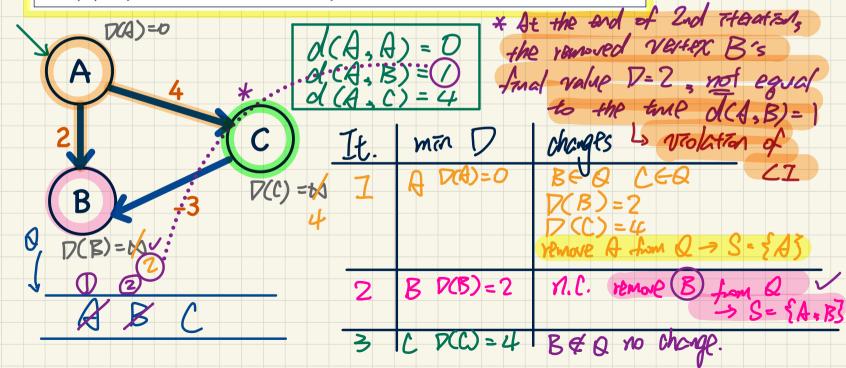
The (iterative) Dijkstra's algorithm has LI:

For every vertext u that has already been removed from the priority queue Q (i.e., u is considered visited), D(u) equals the **true** shortest-path distance from source s to u.

d(s, v)

Remove LI Set & vertices for.

2) 7 L12 (12) - d(W, Z) {W, (Z)}


4 7 LI4 D(X)=d(W,X) [W, Z,

Precondition **Violation** S_{init} Loop Invariant **Violation** $\neg B \land \neg R$ Postcondition **Violation** V: YU·N&BANEV >

Dijkstra's Shortest Path Algorithm: Negative Weights

The (iterative) Dijkstra's algorithm has LI:

For every vertext u that has already been removed from the priority queue Q (i.e., u is considered visited), D(u) equals the **true** shortest-path distance from source s to u.

